
RV’04 Preliminary Version

jMonitor: Java Runtime Event Specification
and Monitoring Library

Murat Karaorman 1

Texas Instruments, Inc.
315 Bollay Drive, Santa Barbara, California USA 93117

Jay Freeman 2

College of Creative Studies
University of California

Santa Barbara, California USA 93106

Abstract

jMonitor is a pure Java library and runtime utility for specifying event patterns
and associating them with user provided event monitors that get called when the
specified runtime events occur during the execution of legacy Java applications.
jMonitor APIs define an event specification abstraction layer allowing programmers
to design event patterns to monitor runtime execution of legacy Java applications.
jMonitor instrumentation works at the Java bytecode level and does not require the
presence of source code for the Java application that is being monitored. jMonitor
overloads the dynamic class loader and takes the event specification and monitors (in
the form of Java class files) as additional arguments when launching the target Java
application. The class bytecodes of the monitored Java program are instrumented
on the fly by the jMonitor class loader according to the needs of the externally
specified jMonitor event patterns and event monitors.

Key words: Aspect-oriented programming, event monitoring,
byte-code instrumentation, runtime verification, jMonitor.

1 Introduction

jMonitor is a pure Java library and runtime utility which allows programmers
to specify event patterns to monitor runtime execution of legacy Java applica-
tions. jMonitor works by overloading the dynamic class loader. The jMonitor

1 Email: muratk@ti.com
2 Email: saurik@saurik.com

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Karaorman and Freeman

class loader instruments the class bytecodes of the monitored Java program
on the fly according to the externally specified event patterns and event mon-
itors. jMonitor instruments class bytecodes directly without requiring the
source code of the monitored Java application.

During the execution of an instrumented application, each Java bytecode
instruction that matches any of the specified event patterns triggers the call
of one or more associated monitor methods. The monitor methods get called
with the following runtime context information regarding the triggering event:
the type of event, its target object, the call stack representing the method in
which the event occurred, and the arguments to the method which collectively
defines the full call context when the event occurred.

jMonitor events correspond to fundamental Java programming abstrac-
tions such as reading or writing of a field in a class, method invocation, method
return or throw of an exception, and creation of a new object or array. Each
event is also qualified with a Java application context such as the name of the
field or the method and the names of the class and method context. The names
are specified as strings representing POSIX compliant regular expressions.

Several distinct event monitors can be associated with any event. jMonitor
instruments applications to capture the call context and call the monitor func-
tion with this information. Each monitoring function is called before, after or
instead of the associated event depending on the event specification.

jMonitor presents a flexible and powerful event modelling and monitoring
paradigm that offers the programmer some of the same benefits of aspect
oriented programming.

The organization of the paper is as follows. In section 2 we introduce
the jMonitor events, event patterns and event monitors. In section 3 we de-
scribe the different types of event monitors and the types of runtime context
information collected and made available to the event monitor through jMon-
itor instrumentation. In section 4 we present the design and implementation
overview. Section 5 covers how jMonitor relates to existing work in the field.

2 jMonitor Event Patterns

In this section we introduce jMonitor event patterns. Each event pattern de-
scribes a particular Java runtime event, such as the read or write of a field, or a
method call, along with a constraining call context. The call context statically
binds the specified runtime event to a legacy application domain. jMonitor
uses the given event specifications to instrument legacy user application to
detect when event is triggered and call any associated monitor function. Fig-
ure 1 illustrates the general idea of specifying event patterns using jMonitor
APIs and attaching event monitors to each event pattern. A complete listing
of jMonitor classes and method signatures is in Figure 4.

During start-up, the jMonitor instrumenting class loader calls the static
setEventPatterns method of a user provided event pattern specification

165

Karaorman and Freeman

// Event Specification Class
public class MyEvents {

static public void setEventPatterns()
{

//event-0
.onMethodCall().of(<signature>)

.doBefore(<monitor-a>)

//event-1
.onFieldwrite().of(<signature>)

.doInstead(<monitor-b>)
. . .

//event-k
… // associate with Monitor-m

}

// Event Specification Class// Event Specification Class
public class MyEvents {

static public voidstatic public void setEventPatternssetEventPatterns() ()
{{

//event//event--00
..onMethodCallonMethodCall()().of.of(<signature>)(<signature>)

..doBeforedoBefore(<monitor(<monitor--a>)a>)

//event//event--1 1
..onFieldwriteonFieldwrite()().of.of(<signature>)(<signature>)

..doInsteaddoInstead(<monitor(<monitor--b>)b>)
. . .

//event//event--kk
… // … // associate with Monitorassociate with Monitor--mm

}}

// monitor-A
class MonitorA implements

jMonitor. Monitor

public void doEvent(EventContext ctx) {
…

}
}

// monitor// monitor--AA
class class MonitorAMonitorA implements implements

jMonitor. MonitorMonitor

public void public void doEventdoEvent((EventContext ctxEventContext ctx) {) {
… …

}}
}}

// monitor-B
class MonitorB implements

jMonitor. InsteadMonitor

public Object doInstead(EventContext ctx) {
…

}
}

// monitor// monitor--BB
class class MonitorB MonitorB implements implements

jMonitor. InsteadMonitorInsteadMonitor

public Object public Object doInsteaddoInstead((EventContext ctxEventContext ctx) {) {
… …

}}
}}

// monitor-M
…

// monitor// monitor--MM
……

?

?

?

Fig. 1. User Defined Event Specifiers and Event Monitors

classes. Figure 2 illustrates the flow of information about the legacy applica-
tion and the event monitoring layer. Each event pattern specified by the user
subsequently guides jMonitor class loader to perform any needed on-the-fly
instrumentation of the bytecodes of each class before it gets loaded.

2.1 jMonitor Event Types

Each jMonitor event pattern is based on at least one of the following fun-
damental Java language abstractions: the reading or writing of a field in a
class, method invocation, method return or throw of an exception, or cre-
ation of a new object or array. The monitoring application layer builds
each event pattern by calling jMonitor.EventPattern methods inside the
setEventPatterns method. Table 1 summarizes the different types of Java
events supported by jMonitor and the corresponding static jMonitor.EventPattern
methods.

2.2 Specifying Event Contexts

Each jMonitor method listed in Table 1 returns a reference to a newly con-
structed jMonitor.EventPattern object. Each created EventPattern object

166

Karaorman and Freeman

jMonitorjMonitor Class LoaderClass Loader

Legacy App
Java Class File

Legacy App Legacy App
Java Class FileJava Class File

Event Pattern
Specification
Java class file

Event Pattern Event Pattern
SpecificationSpecification
Java class fileJava class file

Event
Monitors

Event Event
MonitorsMonitors

Instrumented
App Class File

Instrumented Instrumented
App Class FileApp Class File

VerifierVerifier

InterpreterInterpreter JITJIT

Runtime SystemRuntime System

JVMJVM

Fig. 2. jMonitor class loader performs on-the-fly bytecode instrumentation

can be further modified using one or more of the context definition APIs it
supports as listed in Table 2 to narrow down the event context it matches.

For example, the following code snippet:

...
static public void setEventPatterns()
{

EventPattern e1, e2, e3;
e1 = jMonitor.EventPattern.onFieldWrite()

.of("\\.Foo.a$");
e2 = e1.from("\\.MyApp\\.bar\\(");
e3 = jMonitor.EventPattern.onMethodCall()

.of("\\.Foo\\.m\\(")

.from("Bar\\..*\\(");
...

}

defines a new event pattern, e1, corresponding to all “write” accesses to fields
named “a” in all Foo classes, in any package. The second event pattern, e2,
is derived from e1, but further constrains the new event pattern to match
only when the write access to a Foo.a field happens during the execution of a

167

Karaorman and Freeman

Table 1
Event Types

Event type EventPattern
method

Argument Event description

Field read onFieldRead None Read of a field, directly or
through an object or static
class reference

Field write onFieldWrite None Assignment of value to a field,
directly or through an object or
static class reference

Method invocation onMethodCall None Method call through an ob-
ject reference or directly within
same scope or as a static
method

Return onReturn None Issue of a return instruction
from a method context

Throw exception onThrow None Issue of a throw instruction
from a method context

Instance creation onNew None Issue of a new instruction used
to instantiate a new object of a
concrete class

Array creation onArrayCreate None Issue of a new instruction used
to create a new array

Any event onAnyEvent None Any of the events listed in this
table

MyApp.bar function call. The event pattern e2 matches a subset of all events
described by e1. Similarly, each EventPattern context definition method call
builds a new event pattern with additional constraints. The event pattern e3
matches all method calls for Foo.m() placed from anywhere within package
or class Bar.

2.3 On Regular Expression Syntax Notation

Something that must be noted while reading the code examples is that in
POSIX and Perl regular expressions the “.” symbol is used to match any single
character. As Java package names use this character, in order to explicitly
match a package name (such as java.lang) and prevent from matching other
names that may match (such as javaSlang) the “.” must be escaped to the
regular expression engine. This is done with the “\” character. Unfortunately,
“\” is also the escape character used by Java for it’s strings, and “\” itself must

168

Karaorman and Freeman

Table 2
EventPattern Context Definition Methods

.

EventPattern
method

Argument type Argument Description

of Method, Field, Class
or Exception signa-
ture

Regular expression to match
against the event target’s signature

from Method signature Regular expression to match
against the signature of the
method that immediately caused
the event

in Method signature Regular expression to match
against any method’s signature in
the runtime call stack

setName String Assigned name for the pattern

getName none

Table 3
EventPattern Logic Operators

EventPattern
method

Argument Description

and EventPattern
object

Returns new event pattern that must
match both the target and argument event
pattern

or EventPattern
object

Returns new event pattern that matches
either the target or the argument event
pattern

not none Returns new event pattern that matches
all other events not matched by the argu-
ment event pattern

be escaped. Therefore, when the sequence “\\. ” is seen in one of jMonitor’s
match expressions it should be read as “match a single period here” as doubly
escaped through Java and regular expressions.

2.4 Logic Operators for Combinining Event Patterns

New event patterns can be constructed using the defined logical operators
defined in Table 3. For example, the following code snippet:

169

Karaorman and Freeman

jMonitor.EventPattern e1, e2, e3, e4;
e1 = jMonitor.EventPattern.onFieldRead().of("\\.Foo\\.a$");
e2 = jMonitor.EventPattern.onFieldWrite().of("\\.Foo\\.a$");
e3 = e1.or(e2);
e4 = e1.and(jMonitor.EventPattern.onAnyEvent().

from("[\\.]Bar\\..*\\(").not());

defines a new event pattern, e1, matching all “read” accesses to fields
named “a” in all Foo classes, in any package. The second event pattern, e2, is
essentially same pattern defined for “write”. Therefore e3 matches the “read”
or “write” of the fields named “a” in all Foo classes, in any package. Finally,
e4 is defined to match all “read” accesses of fields named “a” in all Foo classes,
exluding those issued from any method in package “Bar”.

2.5 Attaching Monitors to Events

Creating an event pattern object by itself does not necessarily result in the
instrumentation of any application class bytecode to set up a monitor call trig-
ger. Only by associating an event pattern with an event monitor will jMonitor
instrument the matching context’s bytecodes. This association is established
by calling one of the doBefore, doAfter, or doInstead methods on the event
pattern. Matching event patterns to actual instructions in class bytecodes of
the monitored application is performed statically during initialization, prior to
loading any application class. The instrumented application methods simply
call the event monitor methods when execution reaches the specified event
trigger locations.

For event patterns built using the of and from constructs, no additional
runtime checks are needed to determine whether a specific Java instruction
matches the event pattern. Event patterns that include the in context defi-
nitions incur a very slight extra runtime overhead (single boolean test) dur-
ing application execution around each instruction that potentially match the
event pattern. This also imposes a similar overhead to the call of the function
mentioned by the in construct.

To attach an event monitor to a particular event pattern it is sufficient
to call one of the setEventPatterns methods listed in Table 4. An example
event specifier class is illustrated in Figure 3. This example specifies an event
pattern that replaces all calls to the mypackage.MyClass.foo(Object) func-
tion with the doInstead method of mypackage.MyNullMonitor class. Each
method can be called multiple times to attach additional monitor methods
that get called when the event is triggered.

170

Karaorman and Freeman

Table 4
EventPattern Monitor Specification Methods

.

EventPattern
method

Argument Description

doBefore Class name Argument contains the name of the class
containing a doEvent monitor method that
gets called with the call context information
immediately before the specified matching
Java event occurs

doAfter Class name Argument contains the name of the class
containing a doEvent monitor method that
gets called with the call context informa-
tion immediately after the specified match-
ing Java event occurs. Not applicable for
return and throw events.

doInstead Class name Argument contains the name of the class
containing a doInstead monitor method
that gets called with the call context infor-
mation. This method is called instead of the
specified matching Java event. The value re-
turned back from the doInstead monitor is
plugged back where appropriate to replace
the corresponding Java event’s evaluation

public class MyEvents
{

static public void setEventPatterns() {

jMonitor.EventPattern.onMethodCall()
.of("int mypackage\\.MyClass\\.foo\\(Object\\)")
.doInstead("mypackage\\.MyNullMonitor");

}
}

Fig. 3. Example Event Pattern Specifier

3 Event Monitors

Each event pattern is associated with zero or more event monitors. A jMonitor
event monitor is a pure Java class inheriting from one of the abstract classes in
the jMonitor package: Monitor or InsteadMonitor. Each class corresponds
to a particular type of the monitor that is attached to an event pattern. The
doAfter and doBefore monitors implement the jMonitor.Monitor interface

171

Karaorman and Freeman

P jMonitor P: Package

| C: Class

|C EventType I: Interface

| |M int getType() S: Static Method

| |M String toString() A: Abstract

| M: Method

|C EventContext

| |M EventType getEventType()

| |M String getSignature()

| |M Object getTarget()

| |M Object getValue()

| |M Object[] getArguments()

| |M StackFrame[] getCallStack()

| |M EventPattern getEventPattern()

| |M Object passThrough()

| |M Object passThrough(Object[])

|

|I Monitor

| |M void doEvent(EventContext)

|

|I InsteadMonitor

| |M Object doInstead(EventContext)

|

|C StackFrame

| |M String getSignature()

| |M Object[] getArguments()

| |M String getSourceFile()

| |M Integer getSourceLine()

|

|C EventPattern

|S EventPattern onFieldRead()

|S EventPattern onFieldWrite()

|S EventPattern onMethodCall()

|S EventPattern onReturn()

|S EventPattern onThrow()

|S EventPattern onNew()

|S EventPattern onArrayCreate()

|S EventPattern onAnyEvent()

|

|M EventPattern of(String)

|M EventPattern from(String)

|M EventPattern in(String)

|

|M EventPattern and(EventPattern)

|M EventPattern or(EventPattern)

|M EventPattern not(EventPattern)

|

|M void setName(String)

|M String getName()

|

|M void doBefore(String)

|M void doAfter(String)

|M void doInstread(String)

Fig. 4. jMonitor Class Hierarchy and Overview

and the abstract doEvent method. The doBefore and doAfter monitors are
intended to be observer monitors, although the monitors are implemented as
unconstrained Java methods and can have side-effects.

The doInstead type monitors on the other hand are intended to allow user
level behavior replacement of the monitored events. These monitors imple-
ment the jMonitor.InsteadMonitor interface and the abstract doInstead

172

Karaorman and Freeman

method. The Object result returned by the doInstead method gets used
in the event behavior replacement logic of jMonitor instrumentation. The
class(es) containing the event monitor methods are passed to jMonitor at run-
time, specified either as a command line argument or placed in the classpath.

jMonitor instruments each Java instruction in any loaded class that matches
one of the specified event patterns based on all the event monitors attached
to the event via calls to the doBefore, doAfter, or doInstead methods. If
multiple monitors methods are attached to the same event pattern the order
in which they get called is not defined.

The instrumented application packages the requested call context infor-
mation and calls the attached monitor methods with the call context as an
argument. Table 5 depicts the information that comprises the context acces-
sible by the monitor method through its jMonitor.EventContext argument.
Figure 5 illustrate a fairly generic monitor for logging event traces with all
available context information.

3.1 Behavior Modification Using Instead Monitors

When an application reaches the Java bytecode instruction that corresponds to
a jMonitor event associated with an instead monitor, instead of executing the
Java instruction, the monitor’s doInstead method gets called, passing the call
context as an argument. The value returned back from the doInstead monitor
is subsequently plugged back where appropriate to replace the corresponding
Java event’s evaluation by the instrumented bytecodes.

Each doInstead monitor implements the jMonitor.InsteadMonitor in-
terface and can use the passThrough method of the jMonitor.EventContext
passed to the monitor to perform the original event that is being replaced.
The passThrough method takes an Object[] representing the arguments for
each event type:

• field read: no args

• field write: arguments[0] gets written

• method call: gets called with possibly modified arguments[] from the call
context

• return: can’t call passThrough

• throw exception: can’t call passThrough

• new object or array: constructor is called with the arguments[] from the
call context

The passThrough method can also be called with no arguments to assume
the same argument that were originally passed to the monitored event. The
passThrough call forces the execution of the event that is otherwise being
replaced and returns the resulting object (where appropriate). The instead-
Monitor may subsequently choose to return its own computed result or a result

173

Karaorman and Freeman

Table 5
jMonitor Event Context Interface

.

EventContext
method

Return type Description

getEventType jMonitor.EventType type of jMonitor event that
triggered monitor call

getSignature String Signature of the target that
matched the ”of” constraint.

getTarget Object The target object corre-
sponding to the event

getValue Object Get the result or the excep-
tion returned or the value
about to be written

getArguments Object[] Arguments supplied to the
target event. getArgu-
ments()[0]holds the value for
any ’write’ event

getCallStack jMonitor.StackFrame[] Gets an array of stack
frames corresponding to the
runtime Java call stack. A
stack frame is an object
that contains: signature of
the method, the arguments
passed to the method (if
available), source code file,
line of the call for this
method (if available)

getEventPattern jMonitor.EventPattern Gets the event pattern speci-
fication object that matched
the current event

obtained from a passThrough call. Whatever value the doInstead monitor re-
turns is used to replace the behavior of the original event being monitored.
An example instead monitor is shown in figure 6.

4 Design and Implementation Overview

In order to monitor runtime events during the execution of a legacy Java ap-
plication the developer must launch the target application using the jMonitor
application launcher. The only additional information that must be provided
at the command line to start a monitoring session is the list of event specifica-

174

Karaorman and Freeman

public class TraceMonitor implements jMonitor.Monitor {

public void doEvent(jMonitor.EventContext context) {

System.out.println("Event: " +
context.getEventType().toString() +
" of " + context.getSignature());

System.out.println("Pattern Name: " +
context.getPattern().getName());

System.out.println(" Target = " + context.getTarget());
System.out.println(" Value = " + context.getValue());

Object[] args = context.getArguments();

if (args != null) {
for (int a = 0; a != args.length; ++a) {

System.out.println(" Arg #" + a + ": " + args[a]);
}

}
jMonitor.StackFrame[] stack = context.getCallStack();

if (stack != null) {
System.out.println(" Call Stack:");

for (int i = 0; i != stack.length; ++i) {
jMonitor.StackFrame frame = stack[i];
System.out.println(" " + frame.getSignature());

Object[] args = frame.getArguments();

if (args != null) {
for (int a = 0; a != args.length; ++a) {

System.out.println(" Arg #" + a + ": " + args[a]);
}

}
String file = frame.getSourceFile();
if (file != null) {

System.out.print(" at: " + file);
Integer line = frame.getSourceLine();
if (line != null)

System.out.print("[" + line + "]");
System.out.println();

}
} } } }

Fig. 5. Example Monitor: TraceMonitor

175

Karaorman and Freeman

Table 6
StackFrame Information

.

StackFrame
method

Return type Description

getSignature String When not null, signature of the
method of stack frame in the call stack

getArguments Object[] When not null, arguments supplied to
the method of the stack frame.

getSourceFile String When not null, name of the file for the
method of stack frame

getSourceLine Integer line number in the source file for the
method of stack frame

package mypackage;

public class MyNullMonitor implements jMonitor.InsteadMonitor {

public Object doInstead(jMonitor.EventContext context) {

Object[] args = context.getArguments();

if (args.length != 0 && args[0] == null) {
return new Integer(10);

} else {
return context.passThrough();

}
}

}

Fig. 6. Example InsteadMonitor: MyNullMonitor

tion classes. The names of the event monitor classes do get explicitly passed
into the jMonitor application launcher as they will be dynamically loaded by
the JVM on demand when an instrumented application class that references
a monitor method gets loaded.

During its start-up initialization, jMonitor instrumenting class loader calls
the static setEventPatterns method of the user provided event pattern speci-
fication classes. The jMonitor.EventPattern method calls within the setEventPatterns
method builds the monitor event patterns. Event patterns then are associ-
ated with user specified event monitors using one of the doBefore, doAfter,
or doInstead methods on the event pattern. Each event pattern specified
by the user and attached to a monitor subsequently guides jMonitor class
loader to perform any needed on-the-fly instrumentation of the bytecodes of

176

Karaorman and Freeman

each class before it gets loaded. The following psuedo code illustrates the
instrumentation logic used by jMonitor class loader.

For each loaded class, c
For each method, m, in c

For each instruction, i, in c.m
For each user specified event-pattern, ep

if i.matches(ep, m, c)
add ep.monitors to i.monitors

if i.monitors not empty
insert stub for context extraction
if i.beforeMonitors is not empty

insert doBefore calls
if i.insteadMonitors is empty

insert instruction i
else

insert doInstead call
plug doInstead return

if i.afterMonitors is not empty
insert doAfter calls

else // i has no monitors
insert instruction i

4.1 Status and Limitations

A prototype implementation of jMonitor for proof-of-concept has been imple-
mented. Current implementation uses BCEL bytecode engineering library [2]
and Apache Perl5 style regular expression library. An open source implemen-
tation offering full jMonitor functionality is planned.

One limitation imposed on the user is that event monitoring classes must
be distinct from event specification classes (or declared within the specifica-
tion classes as inner classes). This is necessary to prevent dynamic class from
attempting to load monitor or legacy application classes before the event spec-
ification classes are loaded. jMonitor needs to load specification classes first
and learn about all user defined event patterns before any other class is loaded,
otherwise the instrumentation will be partial.

4.2 Performance

The matching of event patterns to actual intructions in class bytecodes of the
monitored application that needs to be instrumented is performed statically
during initialization, prior to loading any application class. There is no ad-
ditional runtime overhead associated with event pattern matching involving
those built using the of and from constructs. The instrumented application
methods simply call the event monitor methods when execution reaches the

177

Karaorman and Freeman

specified event trigger locations.

Event patterns that include the in context definitions, however, incur a
very slight extra runtime overhead (single boolean test) during application
execution around each instruction that potentially match the event pattern.
It is important to note, however, that there is no runtime regular expression
match overhead for matching the in patterns. All regular expressions are
matched at instrumentation time.

To illustrate the mechanism, suppose there is an in("^int .*\\(") pat-
tern, to match any function that returns an int. For this pattern object, jMon-
itor introduces a thread specific static boolean (so there will be one boolean
per in() pattern per thread). When instrumenting a method, jMonitor checks
to see if it matches the pattern for all in patterns anywhere for any event. If
it does match, then instrumentation adds some code around the method to
add a local boolean variable. If the current thread’s boolean for this pattern is
false, then this boolean gets set true. If not, then we set the local boolean to
false and leave the pattern boolean as true. Then a finally clause is added
to this function that checks if the local boolean is true (i.e., this call was
the call that set the pattern’s boolean to true) then instrumentation sets the
pattern’s boolean to false.

Subsequently, whenever jMonitor instruments an instruction for which
there is an event pattern that contains an in constraint, it checks the cur-
rent thread’s boolean for each in pattern to see if it is set to true. Thus,
we can avoid doing any runtime regular expression matches can support in

constraints without much runtime overhead.

5 Related Work

5.1 Aspect Oriented Programming

jMonitor facilitates a programming model that appears to match the power
of ’aspect-oriented programming’ [3]. There are, however, several differences.
The paradigm expressed by aspect oriented programming is one of develop-
ment. It changes the way one designs and implements software. In compar-
ison, the concept of runtime monitoring as implemented by jMonitor is put
forth as something done more after the fact. When one is completed with
their application and is attempting to get more of an understanding of why a
particular behavior is happening, she may decide to attach monitors to various
events for this purpose. All of the instrumentation is done at runtime, and
these monitors may be used for only a subset of the application through the us-
age of the monitoring class loader. We envision debugging environments may
be developed around this technology, not development environments. While
the implementation of monitoring may share some likenesses to aspect ori-
ented programming, the usage cases, and thereby the programming method
it puts forth, are different.

178

Karaorman and Freeman

5.2 Java-MaC

The tool bearing closest resemblance to jMonitor is Java-MaC, an implemen-
tation for Java of the Monitoring and Checking architecture [4]. Java-MaC
supports a language for specifying events and alarms on a Java program in
the form of a Java expression that begins at a static object. These events can
detect changes made to fields of objects in the system as well as the beginning
and end of method calls. Various other contexts are supported to limit the
scope of such events.

One feature that Java-MaC has that makes it useful for particular kinds
of events is that it tracks the references to a particular object. This allows it
to determine that the fields of a specific object (as determined by a code path
from some static class object) have been changed rather than simply that a
field of an object of a specific type was changed. This functionality causes
Java-MaC to incur a performance penalty, however.

Java-MaC lacks some of JMonitor’s features, for example the equivalent of
doInstead monitors, as well as the in constraints. jMonitor also has the ability
to monitor field modifications or writes to fields based on name and type as
matched by a string regular expression. Because of these differences we find
JMonitor to be a lower-level tool than Java-MaC, and would be interested in
seeing how tools such as Java-MaC could be implemented directly in Java using
JMonitor rather than having to delve into complicated bytecode engineering
directly.

5.3 Valgrind

Another project that is similar in nature and design is Valgrind [5]. Valgrind
is a framework for doing instrumentation of compiled x86 code. Some of the
tools that have been implemented using Valgrind are memory leak and overrun
detectors, as well as profilers. Valgrind has a rather large runtime performance
cost, however, in that even if no instrumentation is to be performed there is
about a four to five times speed hit. Some other limitations of the tool is
due to the limitations of its target domain: the environment of compiled x86
code. There is not nearly enough meta information in compiled x86 binaries to
design general runtime instrumentation skins in Valgrind as most of the useful
code details are lost during the compilation process. jMonitor, implemented
in and for Java, has access to metadata information regarding what functions
or fields are actually being accessed by any particular instruction.

Tools like Valgrind and other commercially successful binary instrumenta-
tion packages such as Rational’s Purify and Quantify and Code coverage tools,
or BoundsChecker do provide very valuable benefits to software developers in
monitoring and detecting dynamic memory access and usage violations, pro-
gram profiling, and code coverage. jMonitor offers fundamentally everything
necessary to develop these types of tool support for Java application develop-
ment.

179

Karaorman and Freeman

5.4 jContractor

The system most similar in design and implementation approach to jMoni-
tor is jContractor[1], a pure Java library based implementation of Design By
Contract for the Java language. It is available as an open source project cur-
rently hosted at http://jcontractor.sourceforge.net/. jContractor was
designed as part of Karaorman’s Ph.D. thesis, designing pure library and re-
flection based techniques for extending object oriented languages[9].

jContractor contracts are written as Java methods that follow a simple
naming convention. jContractor provides runtime contract checking by in-
strumenting the bytecode of classes that define contracts. jContractor can
either add contract checking code to class files to be executed later, or it can
instrument classes at runtime as they are loaded. Both jContractor and jMon-
itor are purely library based, requiring no preprocessing or modifications to
the JVM. jContractor offers some limited runtime monitoring capabilities by
allowing contract methods to use unconstrained Java expressions. Pre-, post
condition and invariant methods can be used for monitoring purposes only
at function entry and exit points, without control over or access to its call
context. jMonitor is a much more fine-grained, lower level and light weight
instrumentation approach ideally suited for event specification and monitor-
ing.

5.5 Binary Component Adaptation

Another project sharing some similarities with jMonitor is the binary compo-
nent adaptation (BCA) mechanism based on load time modification of Java
byte codes [6]. Binary component adaptation (BCA) allows components to be
adapted and evolved in binary form and on-the-fly (during program loading).
Similar to jMonitor, BCA rewrites component binaries before (or while) they
are loaded and requires no source code access. The approach is very flexible,
allowing a wide range of modifications (including method addition, renaming,
and changes to the inheritance or subtyping hierarchy). The differences be-
tween jMonitor and BCA are largely due to the application domain. BCA is
designed to transform components or applications to adapt and evolve with
changing interfaces and other design changes. The adaptations are prescribed
in the form of delta specifications, such as adding or renaming methods or
fields, extending interfaces, and changing inheritance or subtyping hierarchies.
Some of these changes such as those that do not require modifications to the
inheritance hierarchy can be supported by jMonitor. BCA, on the other hand
is not designed to support detection and monitoring of the type of low level
Java events that jMonitor provides.

180

http://jcontractor.sourceforge.net

Karaorman and Freeman

5.6 Query Based Debugging

Lencevicius et al. [7] have developed a query-based debugging tool which,
working somewhat similar to an SQL database query tool, finds all object
tuples satisfying a given boolean constraint expression. The dynamic query
based debugger continually updates the results of queries as the program runs,
and can stop the program as soon as the query result changes. To provide
this functionality, the debugger finds all places where the debugged program
changes a field that could affect the result of the query and uses sophisticated
algorithms to incrementally reevaluate the query. The on-the-fly debugger
adds a capability to stop the java program just at prescribed execution phases
and enables querying as well as allowing to change the query later. They have
implemented such a dynamic query-based debugger for Java written in pure
Java with no JVM modifications.

It seems possible to use a tool based on jMonitor to assist in similar type
of debugging scenarios. jMonitor monitors can be written by the programmer
to provide instant error alerts by continuously checking inter-object relation-
ships while the debugged program is running. The monitor can continually
update the results of queries (expressed as user level Java expressions) as the
program runs, and can stop the program as soon as the query result changes.
The programmer can specify event patterns matching all contexts where the
debugged program changes a field that could affect the results of the query
for an efficiency.

6 Conclusion

We have introduced jMonitor, a pure Java library and runtime utility for
user level specification of event patterns and associating them with user de-
fined event monitors. jMonitor class loader seamlessly instruments application
classes to call the specified monitor functions when triggerring Java runtime
events occur during execution.

One of the key benefits of jMonitor is the ease of use and intuitiveness
of its approach to event modelling and monitoring. The approach is light
weight and non-intrusive to typical programming and software development
processes. Supporting regular expressions is very powerful and leads to very
concise and simple usage when designing event-patterns. jMonitor does not
require special compilers, pre-processors or special IDEs and since it does not
require source-code or forced recompilation it supports legacy applications
well.

jMonitor presents a flexible, powerful and yet pragmatic and intuitive event
modelling and monitoring paradigm that offers the programmer most of the
same benefits of aspect oriented programming but without requiring requiring
significant changes to the way most Java programmer design and implement
their software, and while supporting their legacy development tools and prac-

181

Karaorman and Freeman

tices.

jMonitor can be used during the development, debugging, testing and de-
ployment stages of the software lifecycle. When a developer needs to get more
of an understanding of when and why a particular behavior is happening, he
or she may decide to design event patterns and attach monitors to analyze the
relevant events. We envision powerful tooling and debugging environments to
be developed around jMonitor technology. Additionally, we envision adding
tooling support to automate some of the mechanical (i.e. programmed speci-
fication) aspects of event pattern specification and event monitor selection.

jMonitor supports dynamic program monitoring and analysis. It can be
used to gather information during program execution and use it to conclude
properties about the program, either during test or in operation.

jMonitor supports program instrumentation. It can be used to instrument
programs without requiring source code, to emit relevant events to an observer
or to modify behavior of legacy applications.

jMonitor supports program guidance. It can be used to alter the behavior
of a legacy program for example to adapt to a new paradigm or when its
specification is violated. This ranges from standard exceptions to advanced
planning. Guidance can also be used during testing to expose errors.

References

[1] Abercrombie, P., M. Karaorman, jContractor: Bytecode instrumentation
techniques for implementing design by contract in Java, In Proceedings of
Second Workshop on Runtime Verification, RV 02, Copenhagen, Denmark, July
26, 2002, (also in Electronic Notes in Theoretical Computer Science, URL:
http://www.elsevier.nl/locate/entcs).

[2] Dahm, M., Byte Code Engineering with the BCEL API, Technical Report B-
17-98, Institut für Informatik, Freie Universität Berlin (1998).

[3] Kiczales, G., et al., Aspect-Oriented Programming, In Proceedings European
Conference on Object-Oriented Programming (1997), 220–242.

[4] Kim, M., et al., Java-MaC: A Run-time Assurance Tool for Java Programs, in
In Klaus Havelund and Grigore Rosu, editors, Electronic Notes in Theoretical
Computer Science, volume 55. Elsevier Science Publishers, 2001.

[5] Nethercote, N., Seward, J., Valgrind: A Program Supervision Framework, In
Proceedings of the Third Workshop on Runtime Verification (RV’03), Boulder,
Colorado, USA, July 2003, (also in Electronic Notes in Theoretical Computer
Science Vol.89 (2003), URL: http://www.elsevier.nl/locate/entcs).

[6] Keller, R., and U. Hölzle, Binary Component Adaptation, In Proceedings of the
European Conference on Object-Oriented Programming, Springer-Verlag, July
1998, 307–332.

182

http://www.elsevier.nl/locate/entcs
http://www.elsevier.nl/locate/entcs

Karaorman and Freeman

[7] Lencevicius, R., U. Hölzle, A.K. Singh, Dynamic Query-Based Debugging,
In Proceedings of the 13th European Conference on Object-Oriented
Programming’99, (ECOOP’99), Lisbon, Portugal, June 1999, (Also published
as Lecture Notes on Computer Science 1628, Springer-Verlag,135–156).

[8] Lindholm, T., and F.Yellin, The Java Virtual Machine Specification, Addison-
Wesley, Reading, 1999.

[9] Karaorman, M., ”Pure Library and Reflection Based Techniques for Extending
Object Oriented Languages, ” Ph.D. thesis, University of California, Santa
Barbara, 2000.

183

	Introduction
	jMonitor Event Patterns
	jMonitor Event Types
	Specifying Event Contexts
	On Regular Expression Syntax Notation
	Logic Operators for Combinining Event Patterns
	Attaching Monitors to Events

	Event Monitors
	Behavior Modification Using Instead Monitors

	Design and Implementation Overview
	Status and Limitations
	Performance

	Related Work
	Aspect Oriented Programming
	Java-MaC
	Valgrind
	jContractor
	Binary Component Adaptation
	Query Based Debugging

	Conclusion
	References

